May 16-23: Low-Cost High-Accuracy Spectral Test System Team Members: Tao Chen, Yifan Jiang, Scott Poder Client/Advisor: Dr. Degang Chen

Introduction

Problem: Accurate Spectral Test is widely used in science and engineering. In particular, accurate spectral test is critical to high performance data converters used in many electronic devices. As a result, there are high standards and requirements on the linearity of the input signals, exact coherency in sampling, and tolerable jitter in the clock signal. As a result, this is very expensive, time consuming, and difficult to maintain and calibrate.

Solution: There are some recently published spectral test algorithms that dramatically relax these stringent requirements of spectral test. We will design a test board for high performance ADCs, implement these algorithms, and compare the accuracy of these results to the traditional test methods.

Technical Details

Hardware

DAC

 DAC8831 is 16-bit, 2MSPS, and operating in bipolar mode

Filter Design:

- RC Filter Phase Shift Output
- RR Filter Match Amplitude of RC Filter
- Input from DAC: ±2.5V sine wave
- Output to ADC: ±4.3V sine wave
- Gain from Input to Output: 1.72
- RC Filter and RR Filter: sqrt(2) attenuation at -3

Tost	Resu	ltc
1631	NE2 U	113

ADS8881 Testing:

Te<u>k</u> PreVu			M 10.0µs			
				หากหาหาหา		
	a ferrar frank frank	hand been been been t	a dat far al farme hanne hanne hanne ha	and he and he are been a because he	and Harney Broad house, Manual Linkson, 1	
Zoom Factor: 25	X					
Re in the Re la Ra	10 Bo 44 Bo	to be at to	to be to to	No to bo o bo	An an an An An I	la da Ba da B
3 VVVVVV	M.M.W.M.	NWWL	IVW IVW		J. W. W. W. W.	WWW
ininia Mi	minimum	minim	ining Minin	min	manning M	manina
Dammy W			· · · W	mannin	mining Wil	
2	-	- 	ianianianananananiania			anin anin ana ana ana ana ana ana ana an
		: :	‡			
3 5.00 V	2 5.	00 V	Z 400ns	100MS/s	its 1.60 V	
	Value	Mean	Min	Max	Std Dev	
Peak-Peak	698.6KHZ 5.60 V	698.6K 5.60	698.6K 5.60	698.6K 5.60	0.000 0.00	19 Apr 2016
Frequency	8.307MHz	Low resol	ution			06:38:54
Coupling Im	pedance (Ω) 75 50	Invert On Off	Bandwidth Full	2 Label	More	J

Figure 1: The Block Diagram of our ADC Test Board

dB Adjusted Gain: 1.72*sqrt(2) • 7 RC Filters + 1RR Filter = 7 Possible Test

Frequencies

ADC

+2.5V

 ADC8881 is 18-bit, 1MSPS, and operating in single ended signal configuration

Figure 2: The ADC Test Board (shown left) with the FPGA (shown right)

Figure 4: ADC output code for 0V input.

Design Requirements

Functional Requirements:

- Deliver Accurate Spectral Test using the new algorithms
 - THD ±1dB compared to Traditional Test Method
- Should not be Time Consuming to obtain results
- Should be completely controllable by the user through a PC

Technical Details Software

SPI Communication

- 3-Wire Operation for both DAC and ADC
- DAC:CS(chip select), iCLK(clock), SDI(data in) • ADC:CS(chip select), iCLK, DOUT(data out)

- Figure 3: ModelSim Simulation of SPI Lookup Tables
- 3 Different Tables for different target frequency
- 65536 Numbers within each table
- The range of Table is from 328 to 65208

Y	N	W	h.	M	M	W	W	M	M	W	W	M	1	W	4	M	N	W	M	M	M		W	M	M	W	W	1	h	N		M	N	W	3	M	N	Y
	2 9				•							·	•		•										- 6				2 3	84								
													÷.				- 2					- 1 -				S.												
				133				355									÷					÷				32				3	53				12			
				•				- A.					•				- 8					·t·									•							

1 5.00 V 3 5.00 V	2 5.0	V 00	400ns ∎→▼0.00000	2.50GS/ s 10k poi	's 1 J nts 1.70 \	Undo Autoset		
	Value	Mean	Min	Max	Std Dev	ل		
Frequency	1.837MHz	1.837M	1.837M	1.837M	0.000	19 Apr 201		
1 Peak-Peak	6.00 V	6.00	6.00	6.00	0.00	07:03:07		
Frequency	8.347MHz	Low signa	al amplitude]		

Figure 6: ADC output code for -Vref

Analysis:

- MSB carried out from the falling edge of the chip select, and subsequently
- One Clock Delay Issue for correct results, but if this is taken into account the ADC performs well

Input Voltage	Measured Digital	Expected Digital
0V	11 1111 1111 1011 1100	11 1111 1111 1111 1111
4.5V	01 1111 1011 1111 0111	01 1111 1111 1111 1111
-4.5V	10 0000 0010 1111 0000	10 0000 0000 0000 0000

- Digital Switching in the form of Relays (no physical switches)
- **Non-Functional Requirements:**
- Low Cost in Comparison to the Traditional Spectral Test
 - Traditional Test Method Cost: \$28,300
- New Test Method Cost: Under \$500 **Operating Environment:**
- Test Board
 - Contains DAC, RC and RR Filters, ADC
 - Seen in gold in Figure 1

FPGA

- Contains Memory and Clock Generator
- Seen in green in Figure 1

• PC

 Contains Verilog code for FPGA and algorithm code in MATLAB

The left figure seen above shows the general looking of the three lookup table, with frequency equal to 20.3kHz, 13.78kHz and 6.89kHz. The x-axis shows the number of elements in table, and the y-axis tells the values of each elements. The digital number are feeding to DAC in this pattern, to make sure the DAC's outputs are the analog sine wave.

The right figure seen above is the zoom-in version. You can clearly see the three different colors, with different frequency.

Future Work

- Future Senior Design Team: • Debug ADC Clock Delay Issue
 - Finish Code for Data Collection
 - Perform Spectral Test
 - Compare Traditional vs Nontraditional
 - Create GUI
 - Make Improvements