Design Document Version 2

Low-Cost High Accuracy Spectral Test
System

Iowa State University
Senior Design: 2015-2016
Team May1623
Adyvisor/Client: Degang Chen

Group Members: Tao Chen, Scott Poder, Yifan Jiang

Table of Contents

Project StAtCIMENTottt ettt e 3
System Level DESIZNoouiinii i e 3
Detailed Description/Implementation.oueuititiiit et 4
OVETall SYSTEIM ...ttt e e e e e e 4
POWET SUPPIIES ..ottt e 6
Digital BUuffers/DITVETSuieiitii ittt et et aa s 8
DA C 9
L S TS ¥ P 10
Audio Precision SWiItCh ..o 14
ADC e 15
CLOCK et e 17
FPGA/MEIMOTY ...ttt ettt e e e et et et et et et et et et e e e e et e eae e aneeneans 17
Serial Peripheral INterfaceo.vvuiiniitii e 17
PO INEITACE. .. e eee et e 18
N 00 11 4T 18
PCB Strategy and Desi@i.......ouuiuiiniiiiiit ittt et 18
Test Procedures and ReSULLSo.oiiiiii 20
Hardware Test P1anoooiiiii e 20
Simulated Test RESUILSot e 25
FUtUIe WOTK ..o 26

List of Tables and FigUurIesoouineiiiii et ees 27

Appendix I: Operation Manualo.ooiiiii i e 29

Appendix II: Alternative DESIZNSuineieii e e 28
Appendix IIT: Other ConSIAETAtIONSeueei ettt et e eeeaanens 29
Appendix IV: Project Plan 30

APPENAIX Vi COAE. .. .ottt 35

Project Statement

Accurate spectral test is widely used in science and engineering. In particular, accurate spectral test is
critical to high performance data converters used base stations, medical instruments, seismic signal
detection, military applications, and so on. IEEE standards and prevalent industry solutions impose
several stringent requirements on the linearity of input signals, on exact coherency in sampling, and on
tolerable jitter in the clock signal. All of these requirements make accurate spectral testing expensive and
time consuming, and make the test setup difficult to maintain and calibrate.

The goal of this project is to develop a prototype test system for Extremely Cost-Effective Spectral Test.
Recently published spectral test algorithms will be implemented for dramatically relaxing the stringent
requirements. The concrete objective is to demonstrate a PCB test system for very low-cost,
high-accuracy full spectrum test for high performance ADCs from Texas Instruments. The PCB will
include a low cost sine wave generator, a clock generator, a low-order RC filter block, an ADC input
driver, a socket for an ADC under test, and ADC output collection. The collected data will be transferred
to a computer for analysis and display. Spectral test results will be compared with results obtained from
Audio Precision instruments.

System Level Design

The system level block diagram can be seen below in Figure 1. For this test board, we will be using a
DAC to generate an impure sine wave. This sine wave will be passed through a buffer for isolation and
will be exposed to one of two filters. One of the filters will be an RC Filter while the other will be an RR
Filter or voltage divider. Only one filter will be selected at a time, and our board’s logic will switch
between the two filters as needed. This output will be buffered and sent to the ADC under test. In real
time, the digital output data of the ADC will be sent back to our FPGA in real time. From here, we will
use spectral test algorithms on the PC to interpret the results of the ADC under test.

Audio
Precision

-3

Test Board

- RR
Filter
RAAALF
o—

ADC
—o-
Fanana®

e,
l 3{
B - |

Data ‘
storage

Figure 1: Block Diagram of the Low-Cost High Accuracy Spectral Test System
Detailed Description/Implementation

Overall System

A more detailed view of our ADC Test Board can be seen below in Figure 2. Here we see that the test
board and the FPGA interface with one another by the male header pins J1. Digital Logic, SPI, and Clock
signals enter the test board via J1 and proceed to get buffered in HB5. Next, the appropriate signals go to
the DAC, Filter, Audio Precision Switch, and ADC.

As described above, these digital signals interface with our DAC in HB1 and generate a £2.5V sine wave.
This sine wave gets filtered by our RC and RR filters in HB2, and due to gain calculations results in a
+4.3V sine wave by design (described in a later section). Next, we go to HB4, which contains a relay as a
switch, which we use digital signals to determine whether we wish our ADC to read signals from the
DAC or the Audio Precision Equipment. Finally, our sine wave travels to HB3, which contains our ADC
under test. Lastly, the digital output of our ADC gets sent back to a header pin on J1, which causes data to
reach our FPGA. These pin assignments can be seen below in Table 1.

Pin Signal

1 SCLK

2 nCS_DAC (Inverted Chip Select DAC)
3 DIN (Digital IN [DAC Data Input])

4 RC1

5 nRC1

6 RC2

7 nRC2

8 RC3

9 nRC3

10 RC4

11 nRC4

12 RC5

13 nRC5

14 RC6

15 nRC6

16 RC7

17 nRC7

18 RR

19 nRR

20 PURE_ON (relay switch to AP)
21 DAC _ON (relay switch to DAC)
22 nCS_ADC (inverted Chip Select ADC)
23 DO (Digital Out [ADC Data Out])
24 Digital GND

Table 1: The Pin Assignments for J1 with Pin 1 being the leftmost pin.

sC1 scz

AnalogPower DigitalPower

HE1 HB2 HE4 HB3

AP Switch ADC

Filter
[+ c

HES

=1
MR AESAILS DAL

2N

il

LS (B
l

= 1=

i
Rl &R AR =

[=[:

{22 22
: a—
i

ﬁ.% ;
B

i A

e e B e e e e

Gl

HEE
HEE

£

i

HESH]
HEER

B
Ei

GND 1

i

=T

[o [
=lor{ el

!
HESMRCT_IH]
B HESHR 1

HHECNRR H]
LrHESFURE ON TH]
T, DAL 0N N
T2 HESMCS ADC]

ADC IH

Buffer-Driver

LA HESO_ B

LnafiBREdl Bl

s RS by]

Lt ;4@1_&_
LR HBaAS fual
LABBHEG B
L7 S R
BER [<l T
L S Bl
e TG 5 i P T
Tl i B
;.g-; BB

Lt s ps_mly

‘l’j;, @
-'5£$|J1 GND

&

E'_-"-i | 5 | 6 | 7 | 8

5]

Figure 2: A hierarchical block view of our ADC Test Board in Multisim.

Power Supplies

In order to provide power to the test board, we will be using multiple 9V batteries to supply power to the
board. Obviously, not all parts run at the same voltage, so voltage regulations will be used to obtain £5V
and 3.3V where appropriate in the system. For the analog portion of the circuit, we will be using LDOs in
the form of the parts uA7805 and uA7905, seen below in Figure 3 (shown as LM7805CT and
LM7905CT, for they are equivalent) to obtain +5V. The maximum output current for this Regulated Dual
Supply is 1.5A. The outputs of these LDOs will be considered clean, which is important for the precision
of the analog portions of the schematic. In addition, analog and digital supply voltages must be separated
from one another for noise purposes, therefore, we will need to use separate voltage regulators for the
digital/analog power supplies on the board.

2 D600 i
lall
[|
1N4001G
|| ue0o VA_5V -
J600 LM7805CT T
=) L VREG|
c o i c
HDR1X2 C600 L_c601 D601
—0.33yF 0.1uF 1N4001G
. T | 1 .
c602 C603 | C604 _| DsO02
— Jeo1 2uF T ==1pF S=0.4pF #AMN4001G ya sy —
! [. £
HDR1X2 U1
LM7905CT
|| D603 ||
1N4001G
F F
G G

= [T = [= [= T w J & [w T = [= I

Figure 3: The Analog Regulated Dual Power Supply providing +5V to our board.

For the digital power supply of the circuit, we designed a synchronous buck converter takes a 9V battery
as an input and outputs 3.3V and a maximum current of 3A. This was important because we are powering
a lot of digital inverters, relays, and relay drivers, and need this high amperage to satisfy all of our power
supply needs. Also, since this buck converter is serving as a digital power supply, it does not need to be as
clean as our analog power supply LDOs. Below in Figure 4 is out designed buck converter.

= i J_::mu —Lc70
22pF 22pF UT00A
FDS6910
= ' i
B HERAAS 0 04uF J7c3rm LT!‘ /
Ot L i VDD_3.3V
c GHND U7 - fgfg lff_? T
c703 ‘ '-I'.PS40192T iz T 10uH
— i . u700B L cros Lcros
e R702 _l—”]f FDSE910 T 100ur T 1pF
106
0.01pF 4.99k0 p
: e o S @
) hvy
—Lc708 —Lc709 GHD
] 0.1pF 4.TuF S
E RT03 J;'GND
10k0 R704
’ A Y
- s c710 00
<RT05 1509 3300pF
L 2.15k0 *—”—
" GND

CH

| 2

| 3

[+]

[=

[=]

Figure 4: The Synchronous Buck Converter which provides 3.3V Digital Supply to the board.

Digital Buffers/Driver

As mentioned earlier, our digital signals from the FPGA must be run through a buffer in order to clean up
the signal and remove jitter. We utilized two inverters to do this seen below in Figure 5 (74AC11004).
Also, the digital logic which was responsible for the digital switching of our relays required relay drivers

in order to ensure sufficient performance. We selected DRV777 to serve as our relay drivers for the

appropriate signals. Since all of these components were digital, they received power from our 3.3V Buck

Converter.

o | | 2 4] | B8 |
SCLK_IN SCLK
e VDD_3.3V VDD_3.3V
hG$ _DAC IN nCS_DA
A
DIN_IN DIN
m; O
|_RC1_IN rRct ||
nRC1_IN . nRC1
[E 5.
ERCZ_IN b SA = RC2 (B
T4AC11004DW TAAC11004DW |
nRC2_IN] nRC2
=
10O O ||
RC3_IN s _ RC3
ARCI_IN 1 ' |_ = VDD-TQ'W nRC3 | _
o=t L 0
RC4 N — e RC4
4
| nRC4_IN — nRC4 | |
T L1 £
RC5_IN = &Y = G RCE
T4AC11004DW TAAC11004DW — |
mRT5_IN —— nRCE | o
m; O
RCE_IN P s RCE
FHRCE_IN 1 n won 3w nRCE [
O 3 24 L 0
RCT_IN G RCT
£ I— B
nRCT_IN c nRCT
O b |
RR_IN = s 1 RR
1 T4AC11004DW TAAC11004DW O
RR_IN nRR
!
PURE_ON_IN U109 U110 &= PURE_OMi
= : = VoD 3.3V | ———mmm O
DAC_ON_IN : ! v ST _T DAC_Oh
[3 L "
he%_ADC_IN =g = 1 GND nCSs_ADE—
O—————— — a. _— R —— |
- - S
& —i i ; G
T4AC11004DW T4AC11004DW
- =7 GND 7 GHND -
o | [E [- [s [= | | =
Figure 5: The Buffers and Drivers for our Digital Signals from the FPGA.

The Digital to Analog Converter (DAC) that we selected for the board is the DAC8831 from Texas
Instruments. This DAC is a 16-bit, low power, voltage output DAC whose architecture is of the R-2R

structure. This DAC was chosen due to its sample rate (2MSPS) being larger than the sampling rate of the

ADC (IMSPS). This is important for precision of our spectral tests.

We are using the DAC to generate an impure sine wave. The design that we will be using will generate a

sine wave with an amplitude of +2.5V. In order to do this, we needed to ensure that our DAC was wired

to bipolar configuration. To make our project different and innovative, we decided to generate multiple

sine waves with varying frequencies, so that we can observe how varying frequency affects our test

results. We chose seven frequencies that were pretty evenly spaced between 1kHz and 20kHz. These
frequencies were 1.0332kHz, 3.3827kHz, 6.888kHz, 10.332kHz, 13.776kHz, 16.665kHz, and 20.259kHz.
We chose these based off the resistor and capacitor values available to us (described in more detail below
in the Filter/Buffer Section).

VA_-5V
VDD_3.3V C200
c 0.1 c
c201 = U200
|| {].1pF$ — R200 DAC_OUT ||
GND GND vy (R o s ez -
DIN & oy et 100pF
5 0 | = €203 +| OPAT735AIDBV D
SCLK = = VA_BV I
|| nCé_DAC T —| LoyF 1 i
VA_SV
- | E
€204
VA sv U202
REF3025 |
- i o 0dpF = -
~—J{vis ouT|= -
€205 o - —
F 0.47yF . ~ U203 F
I I | opa3sana
- G

0 1 | 2 | 3 | 4 | 5 ‘ 8 | T 8

Figure 6: The DAC and its supporting circuitry.

As seen above in Figure 6, our DAC (U201) is powered with 3.3V from our Buck Converter. Also, 5V
analog power comes in to REF3025 (U202), which converts the 5V power supply to a 2.5V power supply.
After this, it is buffered by OPA353 (U203) and sent to the voltage reference input pins REFS and REFF.
These reference pins dictate that the maximum output amplitude of the DAC will be 2.5V. The output
+2.5V sine wave of our DAC gets sent to U200, which serves as an isolation buffer, and then gets noise
filtered by R200 and C202. After this, our sine wave gets sent to our filter design.

Filter Design

For the test board, we will have two filters present. One is low pass RC Filter while the other is a RR
Filter or voltage divider. Only one filter will be selected at a time. This selection will be handled digitally
with the use of low signal relays (RY300-307) which will be controlled by the FPGA. The RR Filter will
be designed so that it contains a constant attenuation of -3dB. The RC Filter will be designed so that the
corner frequency will be at -3dB. The reason that we are doing this is because our algorithms for low-cost
high-accuracy spectral test require both a phase shifted output (RC Filter) as well as a matched amplitude
output (RR Filter). From here using the differences in the signals, we are able to obtain similar spectral
test results to the traditional method. Due to our design requiring multiple frequencies, we included a

10

capacitor bank of various values and used the relays to obtain a wide range of RC Filters with the corner
frequencies matching our input frequencies. These frequencies are 1.0332kHz, 3.3827kHz, 6.888kHz,
10.332kHz, 13.776kHz, 16.665kHz, and 20.259kHz. We obtained component values for these filters by
setting R303 and R304 to chosen values, and using the following equation to obtain R305:

R305 = (R303*R304)/((sqrt(2)-1)*R303-R304)

Similarly, we used these resistor values to find the capacitance that we needed in order to obtain the
frequencies that we desired (o = 2*pi*f):

C30X = sqrt((R30472-R30372-2*R303*R304)/(R303"2*R304"2*©0"2))

In order to provide isolation between the Filter and the ADC/DAC, we must include buffers around it. For
these, we will design one inverting amplifier circuit at the filter input and one at the filter output. Since
our design calls for our DAC to output a £2.5V sine wave and our ADC to receive a +4.3V sine wave, the
overall filter/buffer segment must provide a gain of 1.72. However, we must also account for the 1/sqrt(2)
attenuation given by the filters, therefore our adjusted gain for this system is 1.72*sqrt(2) = 2.43. Below
in Figure 7 is a representation of what we desire.

+2 5V VAT +4.3V
2.5V -4 3V

Figure 7: An overall block diagram of our filter design.

In order to ensure that the values which we settled on are correct, we ran a simulation in TINA-TI, which
is Texas Instrument’s SPICE Based Analog Simulation Program. We set up the test circuit for the filter
below and simulated the output when we fed a +2.5V sine wave at the seven frequencies that we chose.
Below is our TINA-TI simulation and results for a 10.332kHz sine wave seen in Figures 8-10. As we see
below, the green +2.5V sine wave represents the input sine wave, and the red sine wave is our output sine
wave. We can clearly see for both the RC and RR Filters, that our output sine wave is of magnitude
+4.3V, therefore the simulation checks out and is a success.

11

RS 10k
U3 OPAYZ11
d & c = = g =]
§ = bl =] = = 3
=l P el S e el) ol Bl =
i o= B + = e T ey B8
= S o o o 5 G 1) o
ria
o = o o = = o e
o v R 2 b v i T R
o o o o o o o o
@ @ @ @ @ @ @ @
= = = = = = = z
[@ @ @ [[[[

“ o

= Sy

o o = = i i i = ~Hi—Hi—
L

Figure 8: Our TINA-TI Filter Design Simulation with the 10.332kHz capacitor selected.

= H| @&y 9L | eSS UIMii.ﬂ

A
x[70861u |43 (a]

5.00—

-2.50

_5. GG | T T Y T T T L) L] T | 1] r ! T T T T, T T |] T T T T T T T T | T T T T T T T T T |
0.00 250.00u 500.00u 750.00u 1.00m
Time (s)

Figure 9: The RC Filter Simulation Results ran at 10.332kHz, where the green is the input and the red is
the output.

12

BEI %&”*@\19) m C R a1 - DIT/@\?]P“ i:’
A - —f—J
5.00— X j_:-'ug.gﬁu v[43 | (a]
g \ \ \
2504
. [
= :
]
E 0.00—
E 4
:} -
-2.50
'ﬁ'm-""""'I""'""I""""'I""""'|
0.00 250.00u 500.00u 750.00u 1.00m
Time (s)

Figure 10: The RC Filter Simulation Results ran at 10.332kHz, where the green is the input and the red is

the output.

13

R300
A R301
& 12.1k02 A "
VA_-5V
| i VA_-5V L
=t 3 C301
DAC_OUT R302 01ApF — p " 5
sl VA Usoo | R303 R304 | 0apF = 6
e y 10K0 ke | vao1 FILTER_OUT
1
— = b DEAEIAD C302 | C303 C304 | C305 C306 | C307 | C308 | . . —D_
C309 10nF | 2.7nF 1.5nF | 1nF | 750pF| 620pF| 510F | 634mr.,’. C%z:uZﬂAlD
— = = = == == — =
’ Cc
0.1pF ﬁ
= VA5V = 1 v@s 0 L
] vDD_3.3V VDD_3.3V VDD_3.3V]
; E j D

GND| RY302 |GND
TAS2SA-L2_4.5V

VDD_3.3V

% |

5 o O 0o O O O
RC1 nRC1 : RC3 nRC3 RC5 nRC5 : RC7 nRCT Far
F] a|=] = = e |2 L T F
(3\|be I;YSO_A,EG\N/D GND szsog GND L'-i\N/D)E szao; :lge\rﬁlo 4; e 37
GND| RY307 |GKD
- TAS2SA-L2_45V S2SA-L2_4.5V TXS2SA-L2_4.5V i A-Lz_;lv]
G G
RC2 nRe2 RC4 nRC4 RCs nRCs B E
- 0 n n RR nRR -
[| : [| . | ° [| : |

Figure 11: The Buffers and Filters for our low-cost high-accuracy spectral test.

Audio Precision Switch

For this design, we will want to compare the non traditional method of spectral test which we are
implementing with the traditional method (using Audio Precision Equipment). Therefore, we used a SMA
connector (J400), an isolation buffer in OPA211 (U400), and a relay to digitally switch between the
DAC’s impure sine wave and the Audio Precision's pure sine wave. This can all be seen below in Figure

12.

14

J400 pago R401
- 73391-0060 (g 10k

& Ay Wiy

R402
10k

R403
20(}
= |

o

]
FILTER_OUT
[,

\J.-".
VA_-5V c400

0.4pF
| u4o0]—:
—~L_opa211aD

VDD_3.3V

C401
01

leﬂ

ADC_IN

TXS2SA-L2_ 4.5V

PURE_ON DAC_Oh

u|

o | 1 | 2 | 3

]

[]

B8

Figure 12: The Switching Relay between the Impure DAC sine wave and the pure AP sine wave.

ADC

The Analog to Digital Converter (ADC) under test will be the ADS8881 from Texas Instruments. This
ADC is an 18-bit, 1-MSPS, SAR (successive approximation), precision ADC that operates on very low

power. The ADC is also takes in a dual-differential input, which we have to account for in our input
driver, which is described below. On the actual test board, a socket (U503) will be in place so that we can
run the spectral test on a large quantity of ADCs. The ADC contains some supporting circuitry around it,

including a reference driver and an input driver which can be seen below in Figure 13.

It is also important to note that the ADC will be operating in 3-wire mode for SPI communication
between the Test Board and the FPGA. The entire test board is designed around this ADC, so its selection

was the first step in our design process.

15

o | 1 | 2 | 3 4 5 & 7 8

VA_5V csoo ¥
52 | VA_SV A
EFsz::I?}GKR J__| c501
— 0.1pF
e RsODT o UK
o : \ 3 omasamnavn ol uF U502 ||
L = THS4281DBVR
e Rs03 _Lcaus VDD_3.3V
u 1k0 _A|_1u,: .
VAV
l—[—' Us04 < R506
20Kk0)
9 | OPA330AIDBY s 0.220 L1 |
. U/_ 13 |
e C511 :
8 R2z2 L o o F E D?]
1pF < 20k0 P ot s M D
1 J:Socket
VA_5V U505 R513
\ T TPSTEB33DBV 100
L Vi— §Rs-m R515 |E
l an Ru,s;;sci an 470 <470
- C515 1000pF] ||
1pF
10000pF L2 C51T lcsw
- 0.1pF I Iqu i
R521
A \ v'\(’
& 1k0 1k 100 G

0 1 | 2 | 3 | 4 | 5 | 5 | 7 | 5

Figure 13: The ADC under test along with its biasing circuitry.

In Figure 13 above, 5V analog supply is provided from our LDO to REF5045 (U500). This regulator
brings the voltage level down from 5V to 4.5V. Next, OPA333 and THS428 (U501 and U502) serve as
both buffers, filters, and feedback to isolate the components from one another, filter out any noise, and
provide a clean 4.5V to pin 1 of our ADC. Pin 1 of our ADC (U503 above) was defined as Analog
Reference Input, and since we are providing 4.5V to it, this means in our results the maximum the ADC
will convert from Analog to Digital is a 4.5V signal (to 18 bits worth of 1s). The entirety of this circuit
makes up our Reference Driver for the ADC.

Next, the 4.5V at pin 1 goes through a voltage divider seen by R505 and R222, buffered by OPA330
(U504), and noise filtered by R509 and C512. This results in a voltage of 2.5V. This voltage supplies the
common mode reference to our differential input amplifier at U506 (THS4521). This differential input
amplifier is set up in Single Ended Signal Configuration, which means that we only need to provide it one
signal instead of two (for the other is permanently tied to ground). The signal that gets provided is the
+4.3V that is the output of our Filter Design. The differential input amplifier has the effect that pins 3 and
4 of the ADC (the analog inputs) will always sum up to the reference voltage. Therefore, if we apply 4.5V
to ADC_IN, we will see that pin 3 (the noninverting pin) is at 4.5V and OV at pin 4 (the inverting pin).

16

Additionally, if we apply 2V at ADC_IN, we will obtain 2.0V at the noninverting pin and 2.5V at the
inverting pin.

To provide analog power to the ADC at pin 2, our LDOs supply 5V analog supply to TPS78833 (U505),
which brings it down to 3.3V. Then, this 3.3V gets noise filtered and sent to pin 2, the analog power
supply pin. Additionally, we tie pin 5 to ground, which is the device ground, and tie pin 10 to the 3.3V
digital supply from the Buck Converter (digital power supply pin). We supply clock signal, chip select,
and receive ADC_digital out (our test results), which gets sent to the FPGA via J1. This concludes the in
depth schematic design of our ADC Test Board.

Clock

Ideally, we would like to use the fastest clock signal possible. We choose to have the clock signal for the
ADC and DAC be shared, since we are using 3-wire SPI to communicate with both of them. This would
also simplify things, for they would always be synchronized with each other in the digital timing. After
looking at the datasheets, we discover that 5S0MHz is the ideal, fastest clock frequency that satisfies both
chip requirements.

We decided to use the clock drive from FPGA board. FPGA provide maximum of 100 MHz clock
frequency, so it satisfies our specifications since this is enough for both ADC and DAC operate clock
frequency as mentioned in the previous paragraph. In order to get SOMHz from the FPGA main clock’s
frequency, we can use Johnson Ring Counter, this type of shift register can divide a digital signal by an
even integer multiple, which fits our case perfectly with the integer being 2.

FPGA/Memory

We will choose FPGA - Cyclone V from ALTERA for our design because to generate sine wave, we need
write a lookup table with 16-bits worth of sine wave value into a ROM. It is easy to achieve from FPGA.
Also, we listed above in the Clock section that this FPGA is easy for use to design a clock divider, and
feed the desired clock frequency into DAC and ADC. FPGA can reduce the difficult level of our project,
and since they have spare ones at our parts shop and in our labs, this decision makes a lot of sense for us.

After we obtain the ADC digital output with our test results, we will store this data in the FPGA’s
on-board memory. Then, we can transfer the data via USB drive to MATLAB, where we will run our

algorithms.

Serial Peripheral Interface

The chip to chip communication protocol we are going to use is called Serial Peripheral Interface.
Basically, this protocol uses master to slave architecture to communicate between chips. There are
essentially four pins we concerned about, SCLK (serial clock), MOSI (master output slave input, output
from master), MISO (master input slave output, output from slave), SS (slave select, output from master).

17

In some situations there might be only three pins, for example, DAC8831. We use 3 pins to control it:
SCLK (serial clock), SDI (serial data input, same as MOSI, digital codes are going to be sent into this pin
sequentially), and nCS (inverse chip select, same as SS). Below in Figure 14, we see our ModelSim
Simulation for our timing diagrams for our ADC and DAC (ADC and DAC share the same clock).

DAC_CS
iCLK

DAC_SDI
ADC_CS

ADC_DOUT

Figure 14: The ModelSim Simulation of our SPI.

PC Interface

There are two types of software that are used to interface between the PCB and FPGA, Quartus and
MATLAB. Quartus is used to control the FPGA, and MATLAB is used to generate the input wave
information for the DAC. For our case in generating the sine wave lookup table, MATLAB will be used
to generate a file which contains the information of sine wave, like data points, frequency and amplitude.
Then, this file is used on the FPGA with the assistance of Quartus to control the DAC. When working
with Quartus, we work heavily in Verilog and Modelsim when it comes to memory mapping the data, as
well as generating the SPI communication.

Algorithms

The algorithms were provided by Dr. Chen as MATLAB code for the nontraditional spectral test. We will
use this new algorithms to manipulate our collected data, and obtain comparable results to the traditional
spectral test using Audio Precision Equipment. Please refer to Benjamin Magstadt’s Master Thesis
“Relaxing the requirements for accurate testing of data converters” for more information.

PCB Strategy and Design

We decided that when we created our printed circuit board, we would make a four layer board. The top
layer would consist of the majority of the components and routing. The second layer would be a ground
plane, with analog and digital ground separated, except for a slot in the middle. This would serve as a
system star ground, where this slot connecting the two ground planes consisted of about 5% of the width
of the board. The third layer would consist of power planes, which would be separated much like the
ground planes. Digital power of +3.3V would lie directly above the digital ground plane, and the +5V and
-5V analog planes would lie above the analog ground plane, but be shaped as obscure polygons so that all

18

pins that required +5V would receive them in the appropriate spot. The bottom layer would consist of any
additional components and routing that could not fit on the top layer efficiently.

When placing our components, our strategy separate analog and digital circuits to isolate the noise of the
digital from interfering with the analog (much like our power and ground planes.) However, two of our
components are mixed signal components (our DAC and ADC). Therefore, our strategy was to place
these components at the intersection where the analog and digital ground/power planes meet, as shown
below in Figure 15.

Digital Analog
Components Components
Area Area

Figure 15: A visual representation of our component placement strategy for our PCB.

Below in Figure 16, we can see that we implemented the strategies listed above into our design. We
separated our analog and digital ground planes, and merged them together with a system star ground
where the two planes met. We also separated our analog and digital components with our digital
components being on the bottom of Figure 16 and our analog components being on the top. In addition,
you can see that our power planes were strategically separated, where our -5V analog plane being a
unique polygon shape that looks like a backwards “F” embedded in the +5V analog plane.

19

- m- -

Iy i n e e

Figure 16: The actual PCB layout of our ADC Test Board.

Test Procedures and Results

Hardware Test Plan

Below is our test plan for testing the hardware of the ADC Test Board:

Step 1
Power supply: LDOs and Buck converter

1.1 Connect LDO (Analog) with 9V supply, check the output voltage, +5V.

1.2 Connect Buck Converter (Digital) with 9V supply, check the output voltage, + 3.3V.

20

Step 2
DAC

2.1 Check ref voltage: 2.5V.

2.2 Give a input code and check the output voltage.

For input code 1111 1111 1111 1111, the output voltage should equal to +Vref, 2.5V.
For input code 1000 0000 0000 0000, the output voltage should equal to OV.

For input code 0000 0000 0000 0000, the output voltage should equal to -Vref, -2.5V.

Step 3
Digital Buffer-Drivers

3.1 Measure the signal integrity after the two inverters (buffer), ensure it has the same logic value that we
sent.

3.2 Measure the signal integrity after the relay driver.
3.3 Ensure that the Relay Switches are working as intended.

Step 4
Filter

4.1 Extend the input pin on the R303, and connect the wire with function generator, and apply an AC
signal with the function generator. (Input +/- 2.5Vac)

4.2. Configure relays to the intended corner frequencies, setup filters.

4.3 Measure the output signal. Should expect a sine wave of +/- 4.3V, and right corner frequency from
RR/RC.

Step 5
ADC

5.1 Check ref voltage (pin 1 of ADC), 4.5V.
5.2 Give 1V input voltage, Check the input driver gain equal to 1.
5.3 Check the input drive common mode voltage be Vref/2, 2.25V.

5.4 Check DVDD (pin 10 of the ADC), 3.3V Digital Voltage.

21

5.5 Check AVDD (pin 2 of the ADC), 3.3V Analog Voltage.

5.6 Feed DC signal to the ADC, and check the output digital code.

Use input constant voltage 4.5V, check the output digital code, should be 1FFFF, which is
01 1111 1111 1111 1111 in binary.

Use input constant voltage 0V, check the output digital code, should be 00000, which is
00 0000 0000 0000 0000 in binary or 3FFFF, 11 1111 1111 1111 1111.

Use input constant voltage -4.5V, check the output digital code, should be 20001, which is
10 0000 0000 0000 0000 in binary.

All of the following test plan was carried out and worked, except for steps 2.2 and 5.6. For step 2.2 we
received very strange results seen below in Table 2.

Input Code Measured Output Voltage Expected Output Voltage
I[I11 1111 1111 1111 34mV 2.5V (+Vref)

1000 0000 0000 0000 17mV 0

0000 0000 0000 0000 OmV -2.5V (-Vref)

Table 2: Our Test Results for Step 2.2 (DAC Testing)

We believe that the source of this error is that our DAC chip is fried, for all of the pins of the DAC are at
the appropriate voltage levels and receiving the appropriate digital signals. At the time of writing this
report, we have a new DAC8831 ordered, but it has not arrived yet.

Figure 17: The Final Setup with our FPGA on the left and our ADC Test Board on the right.

22

Tek Prevu

E N

100M5/5

@ 7

@ soov 2 Z 400ns
& s.o0v). 00 10k points 1.60 |-

Value Mean Min Max Std Dev : :
@ Frequency ©698.6kHz 698.6k 698.6k 698.6k 0.000 S ontw
@ Peak—Peak 5.60V 3.60 3.60 3.60 0.00 19 Apr 2016
@ Frequency 8.307MHz Low resolution 06:38:54

; Impedance ; -
Coupling (Q) Invert Bangm:dth | 2 Label ” e
AC & 75 50| On
Figure 18: ADC output code for OV input.

TekPrevu

_ Wﬁb@"},ﬁ
ot - Pyt

%—@ww#q@ﬁm@mmgwm

@ 7

@& soo0v 2% 400ns 2.5005/7s

@ s.o0V). 0 10k points 1.70 %
Value Mean Min Max 5td Dev

@ Frequency 1.053MHz 1.053M 1.053M 1.053M 0.000

@ Peak—Peak 6.00V 6.00 6.00 6.00 0.00

@D Frequency £.347MHz Low sighal amplitude

Autoset

Undo
Autoset

19 Apr 2016
06:532:22

Figure 19: ADC output code for 4.5V input.

23

TekPrevu _
: : . Autoset
@ soo0v B s.00V 400ns 2.50G5/s @ - Undo
@& s.o00v 10k points 1.70% Autoset

Value Mean Min Max 5td Dev
@ Frequency 1.837MHz 1.837M 1.837M 1.837M 0.000 19 Apr 2016
@ Peak—Peak 6.00V 6.00 6.00 6.00 0.00 07:03:07
@D Frequency £.347MHz Low sighal amplitude

Figure 20: ADC output code for -4.5V Intput.

Input Voltage Measured Output Code Expected Code
0 111111 1111 1011 1100 111111 1111 1111 1111
4.5V 0111111011 11110111 Ol 1111 1111 1111 1111
-4.5V 10 0000 0010 1111 0000 10 0000 0000 0000 0000

Table 3: Table ADC measured output codes v.s. expected codes.

With regards to Step 5.6 in our test plan, we did not fully achieve our expected results. This can be seen
above in Figures 18-20 as well as Table 3. From Figure 18-20, the dark blue wave represents the ADC
output code, the cyan wave represents the ADC chip select, and the purple wave represents the clock
signal. From the datasheet, the MSB of the output code supposed to be carried out from the falling edge of
the chip select, and the rest bits are carried out subsequently on the falling edge of the clock. But from the
oscilloscope we can see there is one clock delay on the output code wave. However, if we account for this
we get the suspected code, but it really isn’t realistic in an automatic way when we need high speed
sampling. We suspect that this is a software issue in our code with the FPGA.

24

Simulated Test Results

20—

| | | | | |
o 1000 2000 3000 4000 5000 6000 7000

Figure 21: Arduino Due Spectral test with Frequency = 127Hz

10— |X:19 -
Y.-13.34

20
-30
40]
50—

60—

b il s bl | |

|
0 200 400 600 800 1000 1200 1400 1600

-70

Figure 22: Arduino Due Spectral test with Frequency = 63Hz

The data for the Figure 21 and 22 were not captured on our PCB, however, it is a overview of what the
spectral test of an ADC looks like. The spectrums were captured on the Arduino Due using a signal

25

generator that we had in lab. The Arduino Due contains an internal ADC in its microprocessor with the
sampling frequency of 5.5kHz. These Figures really do not have anything to do with our project, they are
simply example for what our spectral test results should look like. We labeled the peak signal frequency
in each plot, and it matched the signals that we fed it, and observed the harmonics in each graph.

Future Work

Unfortunately, we were unable to achieve successful spectral test results at this point in time with the
project. Therefore, next semester a new senior design team will take over what we had started this
semester. Reflecting back, our hardware is nearly functional, there are just some minor bugs with our
ADC and DAC, for the rest of the hardware checks out (Filter/Relays/Inverters). This new senior design
team will continue where we left off, review our hardware and FPGA code (making improvements where
they see fit), and continue to work towards getting successful spectral test results. They could also
implement a GUI, so that the entire process is much more friendly to the average user. This new senior
design group will have a much greater advantage than we had in being successful, due to all of this
valuable data that we are leaving behind for them. This concludes our Design Document.

Modified date: April 24th, 2016

26

List of Figures and Tables

Figure 1: Block Diagram of the Low-Cost High Accuracy Spectral Test System 4
Table 1: The Pin Assignments for J1 with Pin 1 being the leftmost pin.....................o.. 5
Figure 2: A hierarchical block view of our ADC Test Board in Multisim.....................cooeeees oL 6
Figure 3: The Analog Regulated Dual Power Supply providing £5V to our board 7
Figure 4: The Synchronous Buck Converter which provides 3.3V Digital Supply to the board 8
Figure 5: The Buffers and Drivers for our Digital Signals from the FPGA............................... 9
Figure 6: The DAC and its SUPPOTTING CITCUILIY euutntitiiti ettt ettt e e e eeaeees 10
Figure 7: An overall block diagram of our filter design................ooooiiiiiiiiiiiiiiii 11
Figure 8: Our TINA-TI Filter Design Simulation with the 10.332kHz capacitor selected.............. 12
Figure 9: The RC Filter Simulation Results ran at 10.332kHz...............cooooiiiiiiiiii e, 12
Figure 10: The RC Filter Simulation Results ran at 10.332kHz...............ooooiiiiiiiiii, 13
Figure 11: The Buffers and Filters for our low-cost high-accuracy spectral test.......................... 14

Figure 12: The Switching Relay between the Impure DAC sine wave and the pure AP sine wave...15

Figure 13: The ADC under test along with its biasing CirCuitry............ocoviieiiiiiiiiiiiiaenns 16
Figure 14: The ModelSim Simulation of our SPL......, 18
Figure 15: A visual representation of our component placement strategy for our PCB.................. 19
Figure 16: The actual PCB layout of our ADC Test Board.............ccooviiiiiiiiiiiiiiiiienn, 20
Table 2: Our Test Results for Step 2.2 (DAC TeStNE).....cccueerieereeiieeiieiieieee et e 22
Figure 17: The Final Setup with our FPGA on the left and our ADC Test Board on the right.......... 22

Figure 18: ADC output code for OV Input..........oeiuieii e 23

Figure 19: ADC output code for 4.5V Input.........coooiiiiiiiiiii e 23

Figure 20: ADC output code for -4.5V Itput........oouiniiiitiii i 24
Table 3: Table ADC measured output codes v.s. expected codes.........ccoovviiiiiiiiiiiiiiiiiinnnn.. 24
Figure 21: Arduino Due Spectral test with Frequency = 127Hz............c.cooviiiiiiiiiiiieeens 25
Figure 22: Arduino Due Spectral test with Frequency = 63Hz...............cooiiiiiiiiiiiiiiiiii.s 25

28

Appendix I:

Operation Manual

1.

Connect 9V batteries to PCB (ADC Test Board).

2. Connect all GPIO pins from FPGA to the PCB.

3. Upload the Verilog code into the FPGA.

4. Set the frequencies for the filters by setting the logic on the relay pins.

5. First use RR filter on the PCB, start DAC, by cycling the lookup table for the DAC, and also start
the ADC.

6. When the ADC collect the 216 points of data from DAC, stop the operation on the FPGA.

7. The values captured from the ADC will be store in the FPGA memory, and use the altera control
panel software to write these values into a txt file.

8. Repeat step 5 to 7 by using RC filters.

9. Upload the ADC captured values for RR and RC filters into the MATLAB and plot the frequency
spectrum.

10. Using the Audio precision instrument, and repeat step 4 to 6 without using the filters, and make
sure to set the Audio Precision Relay Switch to its appropriate logic value.

11. Upload the captured file into MATLAB and plot the spectrum.

12. Observe Results.

Appendix II:

Alternative Design

The original design plan was to use the arduino to control the PCB, but we changed to the FPGA later on
for a couple of reasons:

Arduino doesn’t support accurate timing control, for all delay functions are in microsecond delay.
Since we want 50MHz delay, the clock period is 20ns for each clock. So by using FPGA, we will
be able to have the accurate timing control.

The SPI function on the Arduino doesn’t output the correct clock, which will cause the
malfunction of the DAC and ADC. For example, the output clock from the arduino is only 8
clock cycles, however, DAC needs 16 clock cycles and ADC needs 18 clock cycles in order to get
the correct results.

The Arduino doesn’t have enough memory on the board. It has only 512KB memory, but the
FPGA has up to 8MB memory that we can access, which is far superior.

Appendix III:
Other Considerations

One important thing that happened during the debugging process of the DAC, we discovered that we had
accidently routed together two pins that should not have been routed together, which initially lead us to
believe that this was our issue for our DAC not working. Since the PCB is semi-permanent, to correct this

we needed to take an exacto knife to wire traces and slice them a bunch of times until they were no longer

29

connected. Then, we took wire from our lab kits and jerry rigged the connections in their proper
orientation. Although this was an important step, this did not change our test results, which lead us to
believe that our DAC was burnt.

All in all, senior design was an adventure, full of panic when things did not work and satisfaction when

we successfully discovered a bug and cleared it. [know we will not be forgetting our experiences in this
class anytime soon. Thank you for reading.

Appendix IV: Project Plan

*Listed below are sections of our project plan that were not already listed above in the design document.

Concept Sketch/Mockup
Design requirement

The DUT(device under test) we are going to use is ADS8881 from Texas Instrument. The standard
method to test the ADC is using the audio precision instruments to generate the pure sine wave and feed
this sine wave into the ADC, but the cost of generating a pure sine wave is very high, because the audio
precision is very expensive. So the alternative approach to test the ADC is using the DAC to generate the
relative low purity sine wave, and use the algorithm to correct the distortions that comes from the DAC’s
sine wave.

Assessment of Proposed solution

Our proposed solutions is using the DAC to generate the sine wave and test the ADC. By doing this, the
advantage is that it is low cost, relaxes the testing requirements, and in the end is high accuracy. Cost is a
main issue in terms of project budget, an audio precision instrument usually worth 20000 dollars, but a
DAC only cost 10 to 30 dollars. Even though the audio precision instrument will generate a much purer
sine wave than DAC, the inaccuracies caused by DAC will be fixed by algorithm. In terms of testing
requirement, the inaccuracies are introduced by DAC, but we will still get the accurate testing results, so
the testing requirements are related. Based on our design references (Dr. Chen’s master student Ben
Magstadt’s Thesis) the test results made by DAC will be very close to the results made by audio precision
instruments.

Validation and Acceptance Test

Most of the functional blocks will be tested individually in the software simulation, and after all of them
pass the design requirements, the PCB will be made, and the further testing will be done on the PCB. The
software will be modeled in ModelSim and measured on an Oscilloscope.

System Description

Content

In this project, we are asking to design a circuit board to test the accurate spectral. The typical accurate
spectral testing is very choosy. It requires a very pure sine wave which can be very difficult to generate
when the under-test ADC is accurate. Our project is to use the non-standard way to test the ADC. This

30

means we can feed the nonlinear (impure) sine wave to the ADC. This method will significantly reduce
the cost of ADC testing.

The ADC we choose in this project is the ADS8881 from Texas Instruments, it’s a 18-bit differential
input ADC, with maximum sample rate at IMSPS. Our goal is to design a circuit board which can support

the ADS8881, and allow the user to plug different ADS8881 chips and test the quality of them.

Technical approach

In order to be able to test the ADC with nonlinear input, we need to feed the sine wave to two different
filters separately. This will allowed us to distinguish the noise from input signal and the noise from the
ADC.

Process details

We need to design a circuit to support our ADS8881, with the power to drive the ADC. We will do this
using a set of batteries, which as a result will help us reduce the background noise. For the input of the
ADC, we will use the DAC to generate the sine wave. The sine wave THD (total harmonic distortion)
from this method is typically around -50dB to -80dB, depends on which DAC we use. Nevertheless, it is
larger than the pure sine wave THD required in standard test. The digital input to DAC is from the
memory located on the FPGA. We also want to share the clock signal, generated from the FPGA)
between the DAC and ADC to sure our signal is coherent.

Operating Environment

The overall system is broken into three different environments, the PCB which we are going to fabricate,
the FPGA which we will utilize to communicate with the system, and the PC GUI which will contain the
software spectral test algorithms. The PCB will contain the everything between the ADC and the DAC,
which can be seen in gold in Figure 1. The FPGA will contain the memory to which we program the SPI
communication, which can be seen in green in Figure 1. We will be using Verilog with the FPGA’s
interface software to do this. From here, the test results will be extracted from the FPGA and be sent to
our PC, which will pipe into MATLAB to implement the algorithms. After this happens the project goal
is met for the test board.

Functional Requirements

The main functional requirement of this test board is to deliver accurate spectral test using the algorithms
devised in Ben’s Thesis. These spectral test results must be comparable to spectral test results from Audio
Precision equipment for this alternate method to be considered valid.

An alternate functional requirement is the speed of the test. The test should take be high speed and
completely controllable by the user through the PC. No physical switching should be needed on the board.
All switching between filters must be done digitally.

Non-Functional Requirements

The project is titled Low Cost High Accuracy Spectral Test System, with emphasis on the low cost,

31

therefore this is one of the non-functional requirements. Below is our cost analysis:

Budget: $500

Anticipated Costs:

PCB Manufacture: $66

ADC Socket: $11

FPGA: Free from ISU Parts Shop (rental)
Electrical Components: $247.80

Total: $324.80

Below is our Bill of Materials for our Electrical Components for ADC Test Board:

Quantit
y Part Description

Resistors, 1% unless specified

3 0 Res 0603
3/0.22 Res 0603

5 10 Res 0603

3 47 Res 0603

1 100 Res 0603

1 150 Res 0603
4 1k Res 0603 0.1%

3 1k Res 0603

1/2.15k Res 0603

1 4.99k Res 0603

6 10k Res 0603

1/12.1k Res 0603

5 20k Res 0603

1 39k Res 0603

Digikey Part Number

RMCF0603ZTOROOCT-N
D

P17462CT-ND
RMCFO603FT10ROCT-N
D
RMCF0603FT47ROCT-N
D
RMCFO603FT100RCT-N
D
RMCFO603FT150RCT-N
D

A110108CT-ND
RMCF0603FG1KOOCT-N
D
RMCFO603FT2K15CT-N
D
RMCFO603FT4K99CT-N
D
RMCFO603FT10KOCT-N
D
RMCFO603FT12K1CT-N
D
RMCFO603FT20KOCT-N
D
RMCFO603FT39KOCT-N
D

Unit Cost

$0.10
$0.40

$0.10

$0.10

$0.10

$0.10
$0.25

$0.10

$0.10

$0.10

$0.10

$0.10

$0.10

$0.10

Total Cost
S -
S -

$0.30
$1.20

$0.50

$0.30

$0.10

$0.10
$1.00

$0.30

$0.10

$0.10

$0.60

$0.10

$0.50

$0.10

32

N R R NR R R R

63.4k Res 0603

78.7k Res 0603

Signal Capacitors 5%
100pF COG Cap 0603
510pF Cap 0603

620pF Cap 0603

750pF Cap 0603

1000p COG Cap 0603
1.5nF Cap 0603

2.7nF Cap 0603
10000pF NPO Cap 0603

Power Capacitors 10%

1 100pF X7R Cap 0603
1 3300pF X7R Cap 0603
2 0.01uF X7R Cap 0603

15

0.1uF Cap 0603

4 0.1uF X7R Cap 0805
1 0.33uF Cap 0603
1 0.47uF X7R Cap 0805

=

11

NN R R R

[=N N

2.2uF X5R Cap 0805
1uF X7R Cap 0603
2.2uF Cap 0603
4.7uF X5R Cap 0603
10uF X7R Cap 0805
10uF X7R Cap 1206
22uF X7R Cap 1210

100uF Capacitor 0.138 x 0.110

n

Inductors

10uH Ind 0.402 x 0.394 in

ICs

IC ADS8881
IC REF5045
IC OPA333

IC THS4281

RMCFO603FT63KACT-N
D
RMCFO603FT78K7CT-N
D

490-1427-1-ND
490-1444-1-ND
490-1446-1-ND
490-1448-1-ND
490-1451-1-ND
490-1455-1-ND
490-3283-1-ND
490-9666-1-ND

1276-1909-1-ND
490-1503-1-ND
490-1512-1-ND
490-1532-1-ND
490-1673-1-ND
490-3294-1-ND
490-3328-1-ND
490-3334-1-ND
490-3900-1-ND
490-12324-1-ND
490-7203-1-ND
490-6477-1-ND
490-6518-1-ND
490-4524-1-ND

P16248CT-ND

445-3578-1-ND

296-37253-5-ND
296-24504-1-ND
296-26269-1-ND
296-39224-1-ND

$0.10

$0.10

$0.10
$0.15
$0.15
$0.16
$0.10
$0.11
$0.15
$0.18

$0.10
$0.10
$0.10
$0.10
$0.10
$0.13
$0.30
$0.24
$0.10
$0.17
$0.36
$0.10
$0.83
$1.01

$1.59

33

IC OPA330
ICTPS78833
ICTHS4521

IC OPA353

IC REF3025

IC DAC8831

IC OPA735

IC 74AC11004DW
IC DRV777

IC UA7805

IC UA7905

IC MOSFET FDS6910
IC TPS40193

IC OPA211

IC 4.5V DPDT Relay

O W R R R R WOORRRRRR R

Misc.

1N4001 Diode

SMA Connector

Nylon M3 Standoff 20mm
Nylon M3 Screw

1x2 Male Hdr Pins

1x24 Male Hdr Pins

9V Battery Strap

9V Battery

w Wk wWwbsd bR, B

Total

Market/Literature Survey

As stated earlier, the lowa State Graduate Student Benjamin Magstadt based his graduate thesis around

296-37699-1-ND
296-12380-1-ND
296-35973-1-ND
296-26278-1-ND
296-26322-1-ND
296-18030-5-ND
296-41480-1-ND
296-4152-1-ND
296-35584-1-ND
296-39515-5-ND
296-17077-ND
FDS6910CT-ND
296-21677-1-ND
296-22634-1-ND
255-2348-5-ND

1N4001-TPMSCT-ND

WM5543-ND
36-25514-ND
36-29341-ND
S1011EC-02-ND
S1011EC-24-ND
36-84-4-ND
N145-ND

$1.81
$1.16
$2.97
$2.89
$1.64
$14.18
$3.25
$2.28
$0.58
$0.56
$0.79
$1.15
$2.74
$7.61
$5.56

$0.11
$2.99
$0.79
$0.20
$0.16
$0.53
$0.71
$2.38

this idea of relaxing the specifications needed for spectral testing. We are using his research and
implementing it into a test board for one specific kind of ADC. The alternative, which we will be
comparing this to, is the traditional spectral testing which involves Audio Precision equipment. The

technology for spectral testing exists, we are just trying to implement an alternative, and compare our

results to the traditional standard.

Deliverables

The deliverables we are going to give:

Semester 1: simulation results, design schematics, functional PCB
Semester 2: verilog codes, proof of FPGA interfacing with PCB, output data from ADC, data analysis
results from MATLAB

Work Breakdown Structure
Project Schedule

9/2015 - 10/2015 - Research/Component Selection/Methods

11/2015 - 12/2015 - First Draft Schematic/Simulations

1/2016 - 3/2016 - Hardware Redesign/Correct Semester 1 Errors/Begin Software
3/2016 - 4/2016 - PCB Manufacture/Testing/Documentation

Risks/Feasibility Assessment
In order to replace the traditional Spectral Test System, we are utilizing the research of Benjamin

Magstadt who proposed that three algorithms with the right system would provide comparable results to
the very expensive Audio Precision Instruments. In his thesis, he achieved a proof of concept, so if we
follow his algorithms the project should be feasible. We will be using his design and approach as a strong
reference as we incorporate our low cost high-accuracy spectral test system.

Conclusion

The goal of the project is to develop, test, and document a prototype for the Low Cost High Accuracy
Spectral Test System for the TI ADS8881. Here, we will created hardware in the form of a PCB for the
system, and will create and incorporate functional Matlab programs of Ben’s algorithms to perform the
Spectral test. Our data will be visible on a PC which is directly controlling the PCB board. The device
under test will simply be inserted into a socket, for easy insertion and removal for a large number of
ADS8881s.

Appendix V:
Code
FPGA Code

“timescale 1ns/100ps;
module dac_adc_testing(iCLK, oDAC_CS_N, oDAC_SDI, oClock, oADC_CS_N, iADC_DOUT);

input iCLK; /This is 50MHz clock from FPGA

output oClock; /[FPGA output clock to DAC and ADC, same for Clock.
output [1:0]JoDAC_SDI;

output oDAC_CS_N;

35

output)oADC_CS_N;
input [1:0iADC_DOUT;

reg Clock;

reg [4:0]clockcounter;
/IDAC variables

reg DAC_CS_N;

reg [1:0] SDI;

reg [4:0] DAC_counter; //bit position of the 16 bits DAC

reg [15:0] waveforms [0:2]; //[0:2] is just for testing purpose, it will be changed to
27M6-1 after the memory reading is implemented. ***

reg [15:0] counter; /Itotal elements in the lookup table (for DAC use),
will be changed to accomodate 2”16 elements. ***

reg DAC_done;

reg [9:0] i;

reg dac_ready; /[This flag is used for wait for a certain amount of time

/IADC variables

reg [17:0] ADCcode [0:2]; /I This is code read from ADC, the size will be changed to
27M8-1 later ***

reg ADC_CS_N,ADC_done;

reg [3:0] indexcounter; /I Will be changed to count 2*16 codes ***

reg [4:0] ADC_counter; /I bit position counter for ADC generated codes.
reg first_N;

reg converting_done; /I This flag is rised when ADC is done with

converting. About wait for 600ns.
reg [2:0]j; // temp counter for ADC_CS_N initial waitting time
reg ADC_init_wait;
reg [4:0]k;

integer DAC_code_temp[0:65535];

assign oClock = Clock;

assign oDAC_CS_N =DAC_CS_N;
assign oDAC_SDI = SDI;

assign oADC_CS_N = ADC_CS_N;

/linitial conditions
initial begin
Clock =0;
clockcounter =0;

36

waveforms[0] = 16'b1010100100000001;
1l waveforms[1] = 16'b1000010000100000;
1l waveforms[2] = 16'b1110111101111110;

i=0;

dac_ready =0;

/Iset DAC initial conditions
DAC CS N=1;
DAC_done =0;
SDI =0;
DAC_counter = 0;
counter = 0;

/Iset ADC initial conditions
first N =0;
ADC_counter = 0;
ADC_done = 0;
indexcounter = 0;
ADC_CS N=0;
j=0;
ADC_init_wait =0;
k=0;
converting_done = 0;
end

I
* This block is generating the output clock for DAC and ADC.
*/
always@(posedge iCLK)begin
if(clockcounter >= 2)begin
clockcounter <= 0;
Clock <= ~Clock;
end
else begin
clockcounter <= clockcounter + 1;
end

end

/*
* In this block, the DAC is generating sine wave.
*/
always@(negedge Clock)begin
if(i 1= 2)begin

i<=i+1;
end
else begin
dac_ready <= 1;
end
if(DAC_counter <= 16 && DAC_done == 0 && dac_ready)begin // change the
~DAC_done to DAC_CS_N, match the timing
case(DAC_counter)
0:begin
DAC_CS_N<=0;
SDI <= waveforms|[counter][15];
$write("start%b",waveforms[counter][15]);
end

1:begin

SDI <= waveforms[counter][14];
$write("%b",waveforms[counter][14]);
end

2:begin

SDI <= waveforms[counter][13];
$write("%b", waveforms[counter][13]);
end

3:begin

SDI <= waveforms[counter][12];
$write("%b",waveforms[counter][12]);
end

4:begin

SDI <= waveforms|[counter][11];
$write("%b", waveforms[counter][11]);
end

5:begin

SDI <= waveforms[counter][10];
$write("%b",waveforms[counter][10]);
end

6:begin

SDI <= waveforms[counter][9];
$write("%b",waveforms[counter][9]);
end

7:begin

SDI <= waveforms[counter][8];
$write("%b",waveforms[counter][8]);
end

8:begin

SDI <= waveforms[counter][7];
$write("%b",waveforms[counter][7]);
end

9:begin

SDI <= waveforms[counter][6];
$write("%b",waveforms[counter][6]);
end

10:begin

SDI <= waveforms[counter][5];
$write("%b",waveforms[counter][5]);
end

11:begin

SDI <= waveforms[counter][4];
$write("%b", waveforms[counter][4]);
end

12:begin

SDI <= waveforms[counter][3];
$write("%b",waveforms[counter][3]);
end

13:begin

SDI <= waveforms[counter][2];
$write("%b",waveforms[counter][2]);
end

14:begin

SDI <= waveforms[counter][1];
$write("%b",waveforms[counter][1]);
end

15:begin
SDI <= waveforms[counter][0];

39

$write("%bend",waveforms[counter][0]);
end

16:begin
DAC_CS_N<=1;
DAC_done <= 1;
end

default: begin

end

endcase

DAC_counter <= DAC_counter +1;
end

if(DAC_counter == 16) begin
DAC_counter <= 0;

DAC_done <=0;
end
1l if(counter < 65535 && DAC_done)begin
/! counter <= counter +1;
1l DAC_done <= 0;
1l end
end

/*
* In this block, the ADC is converting voltages into codes.
*/
always@(posedge Clock)begin
T

if(j '=1)begin /[This block is used for wait 50ns befor set the ADC_CS_N high.

One time use.
j<=j+1;
end
else begin
ADC _init_wait <= 1;
end
i

if(first_N == 0 && ADC_init_wait ==1)begin

40

ADC_CS_N <= 1;

end
T
if(ADC_CS_N ==1 && k != 4)begin /[This block is used for ADC_CS_N waits 600ns
after the ADC_CS_N has a rising eduge.
k <= k+1;
end

if(ADC_CS_N ==1 && k == 4) begin
converting_done<= 1;
k <=0;

end

i

if(ADC_CS_N == 1 && converting_done)begin
ADC_CS_N <= 0;
first N <= 1;
converting_done <= 0;
end

if(ADC_counter <= 18 && ADC_CS_N == 0 && first_N ==1)begin
case(ADC_counter)
0:begin
ADCcode[indexcounter][17] <=iADC_DOUT;
end

1:begin
ADCcode[indexcounter][16] <=iADC_DOUT;
end

2:begin
ADCcode[indexcounter][15] <=iADC_DOUT;
end

3:begin
ADCcode[indexcounter][14] <=iADC_DOUT;
end

4:begin
ADCcode[indexcounter][13] <=iADC_DOUT;

end

5:begin

41

ADCcode[indexcounter][12] <=iIADC_DOUT;
end

6:begin
ADCcode[indexcounter][11] <=iADC_DOUT;
end

7:begin
ADCcode[indexcounter][10] <=iADC_DOUT;
end

8:begin
ADCcode[indexcounter][9] <=iADC_DOUT;
end

9:begin
ADCcode[indexcounter][8] <=iADC_DOUT;
end

10:begin
ADCcode[indexcounter][7] <=iADC_DOUT;
end

11:begin
ADCcode[indexcounter][6] <=iADC_DOUT;
end

12:begin
ADCcode[indexcounter][5] <=iADC_DOUT;
end

13:begin
ADCcode[indexcounter][4] <=iADC_DOUT;
end

14:begin
ADCcode[indexcounter][3] <=iADC_DOUT;
end

15:begin
ADCcode[indexcounter][2] <=iADC_DOUT;
end

42

16:begin
ADCcode[indexcounter][1] <=iADC_DOUT;
end

17:begin
ADCcode[indexcounter][0] <=iADC_DOUT;
end

18:begin
ADC_done <= 1;
ADC_CS_N <= 1;
end

default: begin

end
endcase

ADC_counter <= ADC_counter +1;

end

if(ADC_counter == 18) begin
ADC_counter <= 0;

end

if(indexcounter < 2 && ADC_done)begin
indexcounter <= indexcounter +1;
ADC_done <= 0;

end

end

/*
* The memory on the FPGA is being used in this block
*/

endmodule

MATLAB Code:

Sine wave lookup table with desired frequency

/l 2 will be changed to 2418-1 ***

43

%%Equation for calculate J:(f_target)/(f sampling)=(J target)/(M).
%%M=2"16. In this case, J= ((20.3*10"3)/(2*10"6)) *(2"12) = 41;

% The V_out = (V_ref*(D-2"15))/(2"15); D(i) is in the range of 328 - 65208; given
the output voltage from

% V_out(min) = 2.5*%(328-2"15)/(2"15)= -2.4749

% V_out(max) = 2.5*%(65208-2"15)/(2"15) = 2.4749

% V_out is within 98.9990% of V_ref

%25 - 700hz

%81 -2k

k=0:
=1
for i=1:4096
k=k+1;
D(i)= round((1+2%*0.99*sin(2*(249/4096) *k)) *1024+1024).

N‘g
S I
-

csvwrite('16khz.csv' D);

function [Amp, Phase, Jmeasured, JinitMeasured] =
nonCoherentCorrection V2(signal, Fsamp, t, numberOfHarmonics)

signal = signal';

iterations = 10;
m = length(signal);

44

%FIRE METHOD BEGIN

[ftdataCoh cohSig nprd P A efft h1Hat2N Jint Jd] =

ncfft 7v_nNumHarmCorr(signal,length(signal),0,0,numberOfHarmonics);

JinitMeasured = Jint + Jd;
%FIRE METHOD END

%subtracting fundamental
r =signal - (A * cos(2 * pi * Fsamp * (Jint +Jd) / m * t + P));

%running closed form solution of least square for harmonics
DO = zeros(m,2*(numberOfHarmonics)+1);

X = transpose(r);

for z = 1:(numberOfHarmonics)
fory=1:m
DO(y,(z-1)*2+1) = cos(2*p1*Fsamp*(z)*(Jint+Jd)/m*t(y));
DO(y,(z-1)*2+2) = sin(2*pi*Fsamp*(z)*(Jint+Jd)/m*t(y));
end
end
DO(:, 2*(numberOfHarmonics)+1) = 1;

s0 = (transpose(DO0) * DO) ~ -1 * (transpose(DO0) * X);

for z = 1:(numberOfHarmonics)
ah(z) = sqrt(s0((z-1)*2+1)"2 + s0((z-1)*2+2)"2);
ph(z) = -atan(s0((z-1)*2+2) / s0((z-1)*2+1));
1f(s0((z-1)*2+1) < 0 && s0((z-1)*2+2) > 0 && ph(z) > 0)
ph(z) = ph(z) - pi;
elseif(s0((z-1)*2+1) < 0 && s0((z-1)*2+2) < 0 && ph(z) < 0)
ph(z) = ph(z) + pi;

45

%
%
%
%
%
%

end
end

%running least squares for the fundamental frequency with harmonics
%subtracted
r = signal;
for b = 2:(numberOfHarmonics)
r=r - ah(b) * cos(2*pi*Fsamp*(b)*(Jint+Jd)/m*t+ph(b));
end

%debug
r123 =r- (A * cos(2 * pi * Fsamp * (Jint + Jd) / m * t + P));;
Y = fft(r123, m) / m;
Ymag =2 * abs(Y);
figure;
plot(20 * log10(Ymag),'r");
%FIRE METHOD BEGIN

[ftdataCoh cohSig nprd P A efft h1Hat2N Jint Jd] =

ncfft 7v. nNumHarmCorr(r,length(r),0,0,numberOfHarmonics);

Jmeasured = Jint + Jd;
%FIRE METHOD END

%subtracting the updated fundamental
r = signal - (A * cos(2 * pi * Fsamp * (Jint + Jd) / m * t + P));

%running closed form solution of least square for harmonics
DO = zeros(m,2* (numberOfHarmonics)+1);

X = transpose(r);

46

for z = 1:(numberOfHarmonics)
fory=1:m
DO(y,(z-1)*2+1) = cos(2*p1*Fsamp*(z)*(Jint+Jd)/m*t(y));
DO(y,(z-1)*2+2) = sin(2*pi*Fsamp*(z)*(Jint+Jd)/m*t(y));
end
end
DO(:, 2*(numberOfHarmonics)+1) = 1;

s0 = (transpose(DO0) * DO) ~ -1 * (transpose(DO0) * X);

for z = 1:(numberOfHarmonics)
ah(z) = sqrt(s0((z-1)*2+1)"2 + s0((z-1)*2+2)"2);
ph(z) = -atan(s0((z-1)*2+2) / s0((z-1)*2+1));
1f(s0((z-1)*2+1) < 0 && s0((z-1)*2+2) > 0 && ph(z) > 0)
ph(z) = ph(z) - pi;
elseif(s0((z-1)*2+1) < 0 && s0((z-1)*2+2) < 0 && ph(z) < 0)
ph(z) = ph(z) + pi;
end
end

Amp = [A, ah(2:numberOfHarmonics)];
Phase = [P, ph(2:numberOfHarmonics)];

Jmeasured = Jint + Jd;

end

47

